Question : If $\sec x- \cos x$ = 4, then what will be the value of $\frac{\left(1+\cos ^2x\right)}{\cos x}?$
Option 1: $\frac{9}{4}$
Option 2: $\frac{1}{4}$
Option 3: $2\sqrt{5}$
Option 4: $\sqrt{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2\sqrt{5}$
Solution : $\sec x- \cos x$ = $4$ ⇒ $(\sec x- \cos x)^2$ = $4^2$ ⇒ $\sec^2 x- 2\sec x \cos x+\cos^2 x $ = $16$ ⇒ $\sec^2 x+\cos^2 x $ = $16+2\sec x \cos x$ ⇒ $\sec^2 x+\cos^2 x + 2\sec x \cos x$ = $16+2\sec x \cos x+2\sec x \cos x$ Since $\sec x \cos x$ = 1, So, $(\sec x+ \cos x)^2$ = $16+2+2$ ⇒ $(\frac{1}{\cos x}+ \cos x)^2$ = $20$ ⇒ $(\frac{1+ \cos^2 x}{\cos x})$ = $\sqrt{20}$ = $2\sqrt5$ Hence, the correct answer is $2\sqrt5$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x+\frac{1}{2x}=2,$ what is the value of $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\; ?$
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Question : If $x-\frac{1}{x}=1$, then what is the value of $\left (\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x^{2}+1}-\frac{1}{x^{2}-1} \right)\;$?
Question : If $\cos x+\sec x=\frac{7}{2 \sqrt{3}}$, then the value of $\cos ^2 x+\sec ^2 x$ will be_____.
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile