Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Option 1: $\frac{1}{3}$
Option 2: $\frac{1}{4}$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{5}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{1}{2}$
Solution : Given: $(x+\frac{1}{x})$ = 5 ⇒ $x^2+1= 5x$ Now, $\frac{5x}{x^{2}+5x+1}$ = $\frac{5x}{x^{2}+1+5x}$ = $\frac{5x}{5x+5x}$ = $\frac{5x}{10x}$ = $\frac{1}{2}$ Hence, the correct answer is $\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $5x+\frac{1}{x}=10$, then $x^2+\frac{1}{25x^2}$ is equal to:
Question : If $\frac{5x}{2}-\frac{[7(6x-\frac{3}{2})]}{4}=\frac{5}{8}$, then what is the value of $x$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x+\frac{1}{x}=5$, then the value of $\frac{x}{1+x+x^2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile