Question : If 50% of (P – Q) = 30% of (P + Q) and Q = $x$% of P, then the value of $x$ is:
Option 1: 30
Option 2: 25
Option 3: 20
Option 4: 50
Correct Answer: 25
Solution : Given: 50% of (P – Q) = 30% of (P + Q) ⇒ 50 × (P – Q) = 30 × (P + Q) ⇒ 50P – 50Q = 30P + 30Q ⇒ 20P = 80Q ⇒ $\frac{\text{P}}{\text{Q}}$ = $\frac{80}{20}$ = $\frac{4}{1}$ ⇒ Q = $\frac{P}{4}$ According to the question, Q = $x$% of P ⇒ $\frac{P}{4}=\frac{x}{100}\times $ P ⇒ $x=\frac{100}{4}=25$ Hence, the correct answer is 25.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x+\frac{1}{x}=-2$, then the value of $x^p +x^q$ is: (where $p$ is an even number and $q$ is an odd number)
Question : If $ p(x+y)^{2}=5$ and $q(x-y)^{2}=3$, then the simplified value of $p^{2}(x+y)^{2}+4pq xy -q^{2}(x-y)^{2}$ is:
Question : If $x=(\sqrt[3]{7})^{3}+3$, then the value of $x^3–9x^2+27x–34$ is:
Question : If $x$ and $y$ are real numbers, then the least possible value of $4 (x -2)^2+ (y-3)^2-2 (x-3)^2$ is:
Question : If 18, $x$, and 50 are continued proportions, then the value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile