Question : If $a+b+c$ = 6 and $ab+bc+ca$ = 11, then the value of $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ is:
Option 1: 33
Option 2: 66
Option 3: 55
Option 4: 23
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 66
Solution : Given: $a+b+c$ = 6 and $ab+bc+ca$ = 11 To find: $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ = $b^2c+bc^2+c^2a+ca^2+a^2b+ab^2+abc+abc+abc$ = $bc(a+b+c)+ac(a+b+c)+ab(a+b+c)$ = $(a+b+c)(ab+bc+ac)$ Putting the values, we get ⇒ 6$×$11 = 66 Hence, the correct answer is 66.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of ${a}^3+{b}^3+{c}^3$ if $(a+b+c)=0$?
Question : If $a^2+b^2+c^2=14$ and $a+b+c=6$, then the value of $(ab+bc+ca)$ is:
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $a+b+c=7$ and $a^3+b^3+c^3-3abc=175$, then what is the value of $(a b+b c+c a)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile