Question : If A, B, and C are the acute angles, such that $\tan (A+B-C)=\frac{1}{\sqrt{3}}, ~\cos (B+C-A)=\frac{1}{2},$ and $\sin (C+A-B)=\frac{1}{\sqrt{2}}$. The value of A + B + C will be equal to:
Option 1: 90°
Option 2: 110°
Option 3: 170°
Option 4: 135°
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 135°
Solution : Given, $\tan (A+B-C)=\frac{1}{\sqrt{3}}, ~\cos (B+C-A)=\frac{1}{2},$ and $\sin (C+A-B)=\frac{1}{\sqrt{2}}$ A, B, and C are acute angles For $\tan (A+B-C)=\frac{1}{\sqrt{3}}=\tan30°$ $⇒A+B-C =30°$ -----------(1) For $\cos (B+C-A)=\frac{1}{2}=\cos60°$ $⇒B+C-A=60°$ ------------(2) And for $\sin (C+A-B)=\frac{1}{\sqrt{2}}=\sin45°$ $⇒C+A-B =45°$ --------(3) Adding equations 1, 2, and 3, we get, ⇒ $A+B+C =30°+60°+45° = 135°$ Hence, the correct answer is 135°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin(A+B)=\sin A\cos B+\cos A \sin B$, then the value of $\sin75°$ is:
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Question : The value of $x$ in the expression $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\cos 5 \alpha=\sin \alpha$ and $5 \alpha<90^{\circ}$, then the value of $\tan 2 \alpha$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile