Question : If a + b + c = 10 and a2 + b2 + c2 = 48, then the value of ab + bc + ca is _______.
Option 1: 25
Option 2: 26
Option 3: 24
Option 4: 18
Correct Answer: 26
Solution : Given: a + b + c = 10 and a2 + b2 + c2 = 48 Using the formula: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca ⇒ (10)2 = 48 + 2(ab + bc + ca) ⇒ 100 – 48 = 2(ab + bc + ca) $\therefore$ ab + bc + ca = $\frac{52}{2}$ = 26 Hence, the correct answer is 26.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If a + b + c = 5 and ab + bc + ca = 7, then the value of a3 + b3 + c3 – 3abc is:
Option 1: 15
Option 2: 20
Option 3: 25
Option 4: 30
Question : If a + b + c = 19, ab + bc + ca = 120, then what is the value of a3 + b3 + c3 – 3abc?
Option 1: 18
Option 2: 23
Option 3: 31
Option 4: 19
Question : If $a+b+c=1, ab+bc+ca=-1$ and $abc=-1$, then the value of $a^{3}+b^{3}+c^{3}$ is:
Option 1: 1
Option 2: – 1
Option 3: 2
Option 4: – 2
Question : If $a^{2}+b^{2}+c^{2}=ab+bc+ca,$ then the value of $\frac{a+c}{b}$ is:
Option 1: 3
Option 2: 2
Option 3: 0
Option 4: 1
Question : If a + b + c = 6 and a2 + b2 + c2 = 38, then what is the value of a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3abc?
Option 2: 6
Option 3: –6
Option 4: –3
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile