Question : If a + b + c = 5 and ab + bc + ca = 7, then the value of a3 + b3 + c3 – 3abc is:
Option 1: 15
Option 2: 20
Option 3: 25
Option 4: 30
Correct Answer: 20
Solution : Here, a + b + c = 5 Squaring both sides, we get, ⇒ (a + b + c) 2 = 25 ⇒ a 2 + b 2 + c 2 + 2ab + 2bc + 2ca = 25 As, ab + bc + ca = 7 ⇒ a 2 + b 2 + c 2 + 2(7) = 25 ⇒ a 2 + b 2 + c 2 = 25 – 14 = 11 As we know, a 3 + b 3 + c 3 = (a + b + c)(a 2 + b 2 + c 2 – ab – bc – ca) + 3abc As, a + b + c = 5 and ab + bc + ca = 7 ⇒ a 3 + b 3 + c 3 = (5)(11 – 7) + 3abc $\therefore$ a 3 + b 3 + c 3 – 3abc = 20 Hence, the correct answer is 20.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If a + b + c = 19, ab + bc + ca = 120, then what is the value of a3 + b3 + c3 – 3abc?
Question : If a + b + c = 10 and a2 + b2 + c2 = 48, then the value of ab + bc + ca is _______.
Question : If a + b + c = 6 and a2 + b2 + c2 = 38, then what is the value of a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3abc?
Question : If a3 + b3 = 217 and a + b = 7, then the value of ab is:
Question : If $a+b+c=1, ab+bc+ca=-1$ and $abc=-1$, then the value of $a^{3}+b^{3}+c^{3}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile