Question : If a + b + c = 6 and a2 + b2 + c2 = 38, then what is the value of a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3abc?
Option 1: 3
Option 2: 6
Option 3: –6
Option 4: –3
Correct Answer: –6
Solution :
(a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2bc + 2ca ⇒ 6 2 = 38 + 2ab + 2bc + 2ca ⇒ (ab + bc + ca) = $\frac{(36 – 38)}{2}$ ⇒ (ab + bc + ca) = – 1 Now, a(b 2 + c 2 ) + b(c 2 + a 2 ) + c(a 2 + b 2 ) + 3abc = a(38 – a 2 ) + b(38 – b 2 ) + c(38 – c 2 ) + 3abc = 38(a + b + c) – {(a 3 + b 3 + c 3 ) – 3abc} = (38 × 6) – {(a + b + c)(a 2 + b 2 + c 2 – ab – bc – ca)} = (38 × 6) – {6 × (38 – (–1))} = (38 × 6) – 6 × 39 = 6(38 – 39) = – 6 Hence, the correct answer is –6.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If a + b + c = 19, ab + bc + ca = 120, then what is the value of a3 + b3 + c3 – 3abc?
Question : If a3 + b3 = 217 and a + b = 7, then the value of ab is:
Question : If x6 – 512y6 = (x2 + Ay2) (x4 – Bx2 y2 + Cy4), then what is the value of (A + B – C)?
Question : If a + b + c = 5 and ab + bc + ca = 7, then the value of a3 + b3 + c3 – 3abc is:
Question : If $a=331, b=336$ and $c=–667$, then the value of $a^3+b^3+c^3–3abc$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile