42 Views

Question : If a + b + c = 6 and a2 + b2 + c2 = 38, then what is the value of a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3abc?

Option 1: 3

Option 2: 6

Option 3: –6

Option 4: –3


Team Careers360 12th Jan, 2024
Answer (1)
Team Careers360 14th Jan, 2024

Correct Answer: –6


Solution :

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ 62 = 38 + 2ab + 2bc + 2ca
⇒ (ab + bc + ca) = $\frac{(36 – 38)}{2}$
⇒ (ab + bc + ca) = – 1
Now, a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 3abc
= a(38 – a2) + b(38 – b2) + c(38 – c2) + 3abc
= 38(a + b + c) – {(a3 + b3 + c3) – 3abc}
= (38 × 6) – {(a + b + c)(a2 + b2 + c2 – ab – bc – ca)}
= (38 × 6) – {6 × (38 – (–1))}
= (38 × 6) – 6 × 39
= 6(38 – 39)
= – 6
Hence, the correct answer is –6.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Exam Date: 3 Jan, 2026 - 20 Jan, 2026
Application Date: 10 Jan, 2026 - 9 Feb, 2026
Application Date: 11 Dec, 2025 - 11 Jan, 2026
Application Date: 16 Dec, 2025 - 16 Jan, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books