Question : If A is an acute angle, the simplified form of $\frac{\cos (\pi-A) \cdot \cot \left(\frac{\pi}{2}+A\right) \cos (-A)}{\tan (\pi+A) \tan \left(\frac{3 \pi}{2}+A\right) \sin (2 \pi-A)}$ is:
Option 1: $ \cos^2 A$
Option 2: $\sin A$
Option 3: $\sin^2 A$
Option 4: $\cos A$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\cos A$
Solution : $\frac{\cos (\pi-A) \cdot \cot \left(\frac{\pi}{2}+A\right) \cos (-A)}{\tan (\pi+A) \tan \left(\frac{3 \pi}{2}+A\right) \sin (2 \pi-A)}$ $=\frac{-\cos A \ \cdot (-\tan A) \ \cdot \cos A}{\tan A \ \cdot (-\cot A) (-\sin A)}$ $= \frac{\cos^2 A \ \cdot \tan A}{\sin A}$ $= \frac{\cos^2 A \ \cdot \frac{\sin A}{\cos A}}{\sin A}$ $= \cos A$ Hence, the correct answer is $\cos A$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Simplify the following: $\frac{\cos x-\sqrt{3} \sin x}{2}$
Question : $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=$___________.
Question : Evaluate the following: $\cos \left(36^{\circ}+A\right) \cdot \cos \left(36^{\circ}-A\right)+\cos \left(54^{\circ}+A\right) \cdot \cos \left(54^{\circ}-A\right)$
Question : Simplify: $\frac{\cos A}{1+\tan A}-\frac{\sin A}{1+\cot A}$
Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile