Hello there,
Solution for your question is
(alpha)^2+(beta)^2
(alpha+beta)^2-2)(alpha)(beta)=(alpha)^2+(beta)^2
(alpha+beta)= -b/a
(alpha)(beta)= c/a
Now, substituting the above values in the equation we get,
(-b/a)^2 - (2*(c/a))= (alpha)^2+(beta)^2
So, b^2/a^2 - (2(c/a)) = (alpha)^2+(beta)^2
(b^2-2ac)/ (a^2) = (alpha)^2+(beta)^2
Thank you.
Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile