Question : If $xy = -6$ and $x^3+ y^3= 19$ ($x$ and $y$ are integers), then what is the value of $\frac{1}{x^{–1}}+\frac{1}{y^{–1}}$?
Option 1: –1
Option 2: –2
Option 3: 1
Option 4: 2
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $xy = -6$ and $x^3+ y^3= 19$ ($x$ and $y$ are integers) We know the algebraic identity, $(x+y)^3=x^3 + y^3+3xy(x+y)$. Substitute the given values in the above formula, ⇒ $(x+y)^3=19+3\times(-6)\times(x+y)$ ⇒ $(x+y)^3=19-18\times(x+y)$ Let $(x+y)=u$. ⇒ $u^3+18u–19=0$ ⇒ $u^3–u^2+u^2–u+19u–19=0$ ⇒ $u^2(u–1)+u(u–1)+19(u–1)=0$ ⇒ $(u–1)(u^2+u+19)=0$ ⇒ $u-1=0$ ⇒ $u=1$ ⇒ $\frac{1}{x^{–1}}+\frac{1}{y^{–1}}=x+y=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x^2-xy+y^2=2$ and $x^4+x^2y^2+y^4=6$, then the value of $(x^2+xy+y^2)$ is:
Question : If $x=1-y$ and $x^2=2-y^2$, then what is the value of $xy$?
Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Question : If $xy(x+y)=m$, then the value of $(x^3+y^3+3m)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile