Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Option 1: $\frac{17}{15}$
Option 2: $\frac{13}{12}$
Option 3: $\frac{11}{9}$
Option 4: $\frac{12}{11}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{13}{12}$
Solution : Given: $4\sin^{2}\theta-1=0$ $⇒4\sin^{2}\theta-1=0$ $⇒4\sin^{2}\theta=1$ $⇒\sin^{2}\theta=\frac{1}{4}$ $⇒\sin\theta=\pm\frac{1}{2}$ Since we're given that $0^{\circ}< \theta< 90^{\circ}$, So, $\sin\theta$ is positive in this range. $⇒\sin\theta=\frac{1}{2}=\sin30^\circ$ $\therefore \theta = 30^\circ$ Putting the value of $\theta$, we get, $\therefore\cos^{2}\theta+\tan^{2}\theta=\cos^{2}30^\circ+\tan^{2}30^\circ=(\frac{\sqrt3}{2})^2+(\frac{1}{\sqrt3})^2=\frac{3}{4}+\frac{1}{3}=\frac{9+4}{12}=\frac{13}{12}$ Hence, the correct answer is $\frac{13}{12}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $\theta$ is an acute angle and $\cos\theta=\frac{11}{17}$, what is the value of $\tan\theta$?
Question : If $\frac{\cos \theta}{(1+\sin \theta)}+\frac{\cos \theta}{(1-\sin \theta)}=4$ and $\theta$ is acute, then the value of $\theta$ is:
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile