Question : If $\alpha$ and $\beta$ are positive acute angles, $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$, then the value of $\sin (\alpha +2\beta)$ is:
Option 1: $0$
Option 2: $1$
Option 3:
$\frac{\sqrt{3}}{2}$
Option 4:
$\frac{1}{\sqrt{2}}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer:
Solution : Given: $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$ $\sin (4\alpha -\beta )=1$ ⇒ $\sin (4\alpha -\beta )=\sin 90^{\circ}$ ⇒ $4\alpha -\beta= 90^{\circ}$...................................... (1) Now, $\cos (2\alpha +\beta)=\frac{1}{2}$ ⇒ $\cos (2\alpha +\beta)=\cos 60^{\circ}$ ⇒ $2\alpha +\beta=60^{\circ}$....................................(2) Solving equations 1 and 2, we get: $6\alpha=150^{\circ}$ ⇒ $\alpha=25^{\circ}$ Putting the value of $\alpha$ in equation 1, we get, $4×25^{\circ} -\beta= 90^{\circ}$ ⇒ $\beta=10^{\circ}$ Thus, $\sin (\alpha +2\beta)=\sin (25^{\circ} +2×10^{\circ})$ $=\sin (25^{\circ} +20^{\circ})$ $=\sin45^{\circ}$ $=\frac{1}{\sqrt{2}}$ Hence, the correct answer is $\frac{1}{\sqrt{2}}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin(A+B)=\sin A\cos B+\cos A \sin B$, then the value of $\sin75°$ is:
Question : If $\frac{\cos\alpha}{\cos\beta}=a$, $\frac{\sin\alpha}{\sin\beta}=b$, then $\sin^{2}\beta$ is equal to:
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\sin \alpha=\frac12$ and $\sin \beta=\frac12$, then what is the value of $\cos (\alpha+\beta)$? $(0°<\alpha, \beta<90° )$
Question : If $\tan^{2}\alpha=1+2\tan^{2}\beta$ ($\alpha,\beta$ are positive acute angles), then $\sqrt2\: \cos\alpha -\cos\beta$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile