Question : If $a, b$ and $c$ are positive numbers such that $(a^2+b^2):(b^2+c^2):(c^2+a^2)=34:61:45$, then $b - a : c - b : c - a$ = _______.
Option 1: 3 : 2 : 1
Option 2: 2 : 1 : 3
Option 3: 3 : 1 : 2
Option 4: 1 : 2 : 3
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2 : 1 : 3
Solution : Given that $(a^2+b^2):(b^2+c^2):(c^2+a^2)=34:61:45$ 1. $a^2 + b^2 = 34k$ (for some constant $k$) 2. $b^2 + c^2 = 61k$ 3. $c^2 + a^2 = 45k$ Adding these three equations, we get, $⇒2(a^2 + b^2 + c^2) = 140k$ $\therefore a^2 + b^2 + c^2 = 70k$ Subtract the first equation from this result, we get, $⇒c^2 = 36k$ $\therefore c = 6\sqrt{k}$ Similarly, by subtracting the second equation from the result, we get, $⇒a^2 = 9k$ $\therefore a = 3\sqrt{k}$ And subtracting the third equation from the result, we get, $⇒b^2 = 25k$ $\therefore b = 5\sqrt{k}$ $⇒(b - a) = 5\sqrt{k} - 3\sqrt{k} = 2\sqrt{k}$ $⇒(c - b) = 6\sqrt{k} - 5\sqrt{k} = \sqrt{k}$ $⇒(c - a) = 6\sqrt{k} - 3\sqrt{k} = 3\sqrt{k}$ $\therefore b - a : c - b : c - a = 2\sqrt{k} : \sqrt{k} : 3\sqrt{k}= 2 : 1 : 3$ Hence, the correct answer is 2 : 1 : 3.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a, b, c$ are real numbers and $a^{2}+b^{2}+c^{2}=2(a-b-c)-3,$ then the value of $a+b+c$ is:
Question : If $m$ and $n$ are two positive real numbers such that $9 m^2+n^2=40$ and $mn = 4$, then the value of $3m + n$ is:
Question : If $x$ and $y$ are positive numbers such that $x - y = 5$ and $xy = 150$, the value of $(x + y)$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}$ is:
Question : If $a^3b=abc=180;\ a, b$, and $c$ are positive integers, then the value of $c$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile