Question : If $x$ and $y$ are real numbers, then the least possible value of $4 (x -2)^2+ (y-3)^2-2 (x-3)^2$ is:
Option 1: 3
Option 2: –4
Option 3: 1
Option 4: –8
Correct Answer: –4
Solution : Given: $x$ and $y$ are real numbers. The expression is $4 (x -2)^2+ (y -3)^2-2 (x-3)^2$ Use the algebraic identity, $(a-b)^2=a^2+b^2-2ab$ For the least possible value, substitute $(y-3)^2=0$ ⇒ $4 (x-2)^2+0-2 (x-3)^2$ $=4(x^2+4-2x)-2(x^2+9-6x)$ $=4x^2+16-8x-2x^2-18+12x$ $=2(x^2-1-2x)$ $=2(x^2+1-2x-2)$ $=2[(x-1)^2-2]$ For the least possible value, substitute $(x-1)^2=0$. ⇒ $2\times -2=-4$ Hence, the correct answer is –4.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Question : If $x^2+8 y^2+12 y-4 x y+9=0$, then the value of $(7 x+8 y)$ is:
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile