Question : If $4 x^2+y^2=40$ and $x y=6$, find the positive value of $2 x+y$.
Option 1: 8
Option 2: 6
Option 3: 5
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 8
Solution : We have, $(2x+y)^2=(2x)^2+y^2+2\times 2x \times y$ $⇒(2x+y)^2=(4x^2+y^2)+4xy$ $⇒(2x+y)^2=40+4\times 6$ $⇒(2x+y)^2=64$ $⇒2x+y=\pm \sqrt{64}$ $⇒2x+y=\pm 8$ The positive value is 8. Hence, the correct answer is 8.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : If 4x2 + y2 = 40 and xy = 6, then find the value of 2x + y.
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Question : If $(\sqrt 3 +1)^{2}=x+\sqrt 3 y$, then the value of $(x+y)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile