Question : If $A=60^{\circ}$ and $B=30^{\circ}$, find the value of $\frac{(\tan A-\tan B)}{(1+\tan A \tan B)}$.
Option 1: $3$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $\sqrt{3}$
Option 4: $1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sqrt{3}}$
Solution : Given, $A=60^{\circ}$ and $B=30^{\circ}$ We know, $\frac{(\tan A-\tan B)}{(1+\tan A \tan B)}=\tan(A-B)=\tan(60^{\circ}-30^{\circ})=\tan30^{\circ}=\frac{1}{\sqrt3}$ Hence, the correct answer is $\frac{1}{\sqrt3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : If $A=30^{\circ}$, then find the value of $\frac{(2 \tan A)}{\left(1-\tan^2 A\right)}$.
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Question : If $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$, then the value of $A+B$ is:
Question : If $\frac{x-x\tan^{2}30^{\circ}}{1+\tan^{2}30^{\circ}}=\sin^{2}30^{\circ}+4\cot^{2}45^{\circ}-\sec^{2}60^{\circ}$, then value of $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile