Question : If $\left(y^2+\frac{1}{y^2}\right)=167$ and $y>0$, find the value of $\left(y+\frac{1}{y}\right)$.
Option 1: 13
Option 2: $-\sqrt{165}$
Option 3: $\sqrt{165}$
Option 4: –13
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 13
Solution : Given, $\left(y^2+\frac{1}{y^2}\right)=167$ Adding 2 on both sides, we get ⇒ $y^2+\frac{1}{y^2}+2=167+2$ ⇒ $y^2+\frac{1}{y^2}+2\times y\times\frac{1}{y}=169$ ⇒ $(y+\frac{1}{y})^2=169$ ⇒ $y+\frac{1}{y}=\sqrt{169}$ ⇒ $y+\frac{1}{y}=13$ [As $y>0$] Hence, the correct answer is 13.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Question : If $a+b :\sqrt{ab} = 4:1 $ where $ a > b > 0$, then $ a:b$ is:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile