Question : If $(a + b + c) = 13$ and $(ab + bc + ca) = 54$, find the value of $\left(a^2+b^2+c^2\right)$.
Option 1: 63
Option 2: 65
Option 3: 61
Option 4: 59
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 61
Solution : $(a + b + c) = 13$ Squaring both sides, $(a^2+b^2+c^2)+2(ab + bc + ca)=169$ ⇒$(a^2+b^2+c^2)+108=169$ ⇒ $(a^2+b^2+c^2)=61$ Hence, the correct answer is 61.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3 a b c\right)=98$, find the value of $(ab+bc+ca)$.
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3abc\right)=98$, find the value of $\left(a^2+b^2+c^2\right)$.
Question : If $a+b+c$ = 6 and $ab+bc+ca$ = 11, then the value of $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ is:
Question : If $\frac{x-a^{2}}{b+c}+\frac{x-b^{2}}{c+a}+\frac{x-c^{2}}{a+b} = 4(a+b+c)$, then $x$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile