Question : If $(a+b+c)=16$ and $\left(a^2+b^2+c^2\right)=90$, find the value of $(a b+b c+c a)$.
Option 1: 84
Option 2: 83
Option 3: 82
Option 4: 81
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 83
Solution : We have, $(a+b+c) = 16$ and $a^2 + b^2 + c^2 = 90$ We know that $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$ So, $16^2 = 90 + 2(ab+bc+ca)$ ⇒ $ab+bc+ca = \frac{16^2 - 90}{2}=83$ Hence, the correct answer is 83.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3abc\right)=98$, find the value of $\left(a^2+b^2+c^2\right)$.
Question : If $(a+b+c)=19$ and $\left(a^2+b^2+c^2\right)=155$, find the value of $(a-b)^2+(b-c)^2+(c-a)^2$
Question : If $\small a^{4}+1=\left [\frac{a^{2}}{b^{2}}\right ]\left (4b^{2}-b^{4}-1\right),$ then what is the value of $a^{4}+b^{4}?$
Question : If $\left (a+\frac{1}{b} \right)=1$ and $\left (b+\frac{1}{c} \right)=1$, the value of $\left (c+\frac{1}{a} \right)$ is:
Question : If $a^{2}=b+c,b^{2}=c+a,c^{2}=a+b$, the value of $3\left (\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile