Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3abc\right)=98$, find the value of $\left(a^2+b^2+c^2\right)$.
Option 1: 70
Option 2: 64
Option 3: 68
Option 4: 72
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 70
Solution : $a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ac)$. Given that: $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3 a b c\right)=98$ So, $98 = 14(a^2+b^2+c^2-ab-bc-ac)$ ⇒ $(a^2+b^2+c^2) = 7+ ab + bc + ac$...(i) We know that, $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac)$...(ii) From equation (i), $(14)^2 = 7 + 3(ab+bc+ac)$ ⇒ $(ab+bc+ac)=63$ Substituting the above value in an equation (i), $(a^2+b^2+c^2) = 7+ 63$ ⇒ $a^2 + b^2 + c^2=70$ So, the value of $(a^2+b^2+c^2)$ is 70. Hence, the correct answer is 70.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3 a b c\right)=98$, find the value of $(ab+bc+ca)$.
Question : If $(a+b+c)=19$ and $\left(a^2+b^2+c^2\right)=155$, find the value of $(a-b)^2+(b-c)^2+(c-a)^2$
Question : If $a+b-c=20$ and $a^2+b^2+c^2=152$, find the value of $a^3+b^3-c^3+3abc$.
Question : If $(a+b+c)=16$ and $\left(a^2+b^2+c^2\right)=90$, find the value of $(a b+b c+c a)$.
Question : If $\small a^{4}+1=\left [\frac{a^{2}}{b^{2}}\right ]\left (4b^{2}-b^{4}-1\right),$ then what is the value of $a^{4}+b^{4}?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile