Question : If $(a+b+c)=19$ and $\left(a^2+b^2+c^2\right)=155$, find the value of $(a-b)^2+(b-c)^2+(c-a)^2$
Option 1: 104
Option 2: 108
Option 3: 100
Option 4: 98
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 104
Solution : Given: $(a+b+c)=19$ $(a^2+b^2+c^2)=155$ We know that $(a+b+c)^2 = (a^2+b^2+c^2)+2(ab+bc+ca)$ So, $19^2 = 155+2(ab+bc+ca)$ ⇒ $ab+bc+ca = \frac{361-155}{2}$ ⇒ $ab+bc+ca= 103$ Now, $(a-b)^2+(b-c)^2+(c-a)^2$ $= a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ca$ $= 2(a^2+b^2+c^2)-2(ab+bc+ca)$ $= 2(155)-2(103)$ $= 2 × 52$ $= 104$ Hence, the correct answer is 104.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3abc\right)=98$, find the value of $\left(a^2+b^2+c^2\right)$.
Question : If $(a+b+c)=14$ and $\left(a^3+b^3+c^3-3 a b c\right)=98$, find the value of $(ab+bc+ca)$.
Question : If $(a+b+c)=16$ and $\left(a^2+b^2+c^2\right)=90$, find the value of $(a b+b c+c a)$.
Question : If $\left (a+\frac{1}{b} \right)=1$ and $\left (b+\frac{1}{c} \right)=1$, the value of $\left (c+\frac{1}{a} \right)$ is:
Question : If $a^{2}=b+c,b^{2}=c+a,c^{2}=a+b$, the value of $3\left (\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile