5 Views

Question : If $(a+b+c)=20$ and $a^2+b^2+c^2=152$, find the value of $a^3+b^3+c^3-3 abc$.

Option 1: 560

Option 2: 640

Option 3: 480

Option 4: 720


Team Careers360 13th Jan, 2024
Answer (1)
Team Careers360 15th Jan, 2024

Correct Answer: 560


Solution : Given: $(a+b+c)=20$ and $a^2+b^2+c^2=152$
We know the identity,
$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$
⇒ $20^2=152+2(ab + bc + ca)$
⇒ $ab + bc + ca=\frac{400-152}{2}$
⇒ $ab + bc + ca= 124$ .........(i)
Also,
$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
From (i),
$a^3+b^3+c^3-3abc=(20)(152-124)$
⇒ $a^3+b^3+c^3-3abc=560$
Hence, the correct answer is 560.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books