Question : If $\frac{\cos \theta}{(1+\sin \theta)}+\frac{\cos \theta}{(1-\sin \theta)}=4$ and $\theta$ is acute, then the value of $\theta$ is:
Option 1: $60^{\circ}$
Option 2: $15^{\circ}$
Option 3: $45^{\circ}$
Option 4: $30^{\circ}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $60^{\circ}$
Solution : $\frac{\cos \theta}{(1+\sin \theta)}+\frac{\cos \theta}{(1-\sin \theta)}=4$ Multiplying the two fractions by $(1+\sin \theta)(1-\sin \theta)=\cos^2 \theta$. $⇒ \cos \theta (1-\sin \theta) + \cos \theta (1+\sin \theta) = 4 \cos^2 \theta$ $⇒ 2 \cos \theta = 4 \cos^2 \theta$ $⇒ 1 = 2 \cos \theta$ $⇒ \cos \theta = \frac{1}{2}$ $⇒ \theta = 60^\circ$ Hence, the correct answer is $60^\circ$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile