Question : If $x^2-3.2 x+1=0$ and $x>1$, the value of $x^2-\frac{1}{x^2}$ is:
Option 1: $16.8 \sqrt{0.39}$
Option 2: $12.8 \sqrt{0.39}$
Option 3: $16.8 \sqrt{0.32}$
Option 4: $12.8 \sqrt{0.32}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $12.8 \sqrt{0.39}$
Solution : Given: $x^2-3.2 x+1=0$ and $x>1$ $x^2-3.2 x+1=0$ Dividing both sides by $x$, we get, $⇒x-3.2 +\frac{1}{x}=0$ $⇒x+\frac{1}{x}=3.2 $---(1) Squaring both sides, we get, $⇒x^2+\frac{1}{x^2}+2=10.24 $ $⇒x^2+\frac{1}{x^2}-2=6.24 $ $⇒(x-\frac{1}{x})^2=6.24 $ $⇒(x-\frac{1}{x})=\sqrt{6.24}$---(2) Multiplying 1 and 2, $(x+\frac{1}{x})(x-\frac{1}{x})=3.2×\sqrt{6.24}=3.2×\sqrt{16×0.39}=12.8 \sqrt{0.39}$ Hence, the correct answer is $12.8 \sqrt{0.39}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\frac{1}{x-5}(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Question : If $x^2-5\sqrt{5}x+1=0$ and $x > 0$, what is the value of $(x^3-\frac{1}{x^3})$?
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : If $x+\frac{1}{x}=\sqrt{3}$ then, the value of $x^{30}+x^{24}+x^{18}+x^{12}+x^{6}+1$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile