Question : If $x + y = 10$, $2xy = 48$ and $x > y$, then find $2x - y$.
Option 1: 6
Option 2: 8
Option 3: 4
Option 4: 3
Correct Answer: 8
Solution : Given that $x + y = 10$ and $2xy = 48$, $⇒y = 10 - x$ Substituting this into the second equation, $⇒2x(10 - x) = 48$ $⇒x^2-10x+24=0$ $⇒(x-4)(x-6)=0$ $x = 6$ and $x = 4$ But given that $x > y$, we take $x = 6$. Substituting $x = 6$ into the equation $y = 10 - x$, $⇒y = 4$ Finally, substituting $x = 6$ and $y = 4$ into the expression $2x - y$ gives: $⇒2x - y = 2(6) - 4 = 8$ Hence, the correct answer is 8.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Question : Directions: If x % y = y2 – x2, x $ y = x + y2, x # y = 2xy, then find the value of ((13 % 5) $ 6) # 15 = ?
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile