Question : If $(a+b+c)=17$ and $\left(a^2+b^2+c^2\right)=101$, then find the value of $(a-b)^2+(b-c)^2+(c-a)^2$.
Option 1: 12
Option 2: 14
Option 3: 10
Option 4: 16
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 14
Solution : Given: $(a+b+c)=17$ and $\left(a^2+b^2+c^2\right)=101$ We know that $(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$ Squaring both sides, we get ⇒ $a^2+b^2+c^2+2ab+2bc+2ac=289$ ⇒ $101+2ab+2bc+2ac=289$ ⇒ $2ab+2bc+2ac=188$ Now, $(a-b)^2+(b-c)^2+(c-a)^2$ = $2a^2+2b^2+2c^2-2ab-2bc-2ac$ = $2\times101-188$ = $202-188=14$ Hence, the correct answer is 14.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left (a+b \right):\left (b+c \right):\left (c+a \right)= 6:7:8$ and $\left (a+b+c \right) = 14,$ then value of $c$ is:
Question : If A : B = 2 : 3, B : C = 6 : 7, C : D = 14 : 3, then find A : B : C : D.
Question : If $(a+b+c)=17$, and $\left(a^2+b^2+c^2\right)=115$, find the value of $(a+b)^2+(b+c)^2+(c+a)^2$.
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Question : If $\small p^{3}-q^{3}=\left (p-q \right )\left \{ \left (p-q \right)^{2}-xpq \right \}$, then find the value of $x$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile