Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Option 1: $6 \sqrt{2}$
Option 2: $-2 \sqrt{19}$
Option 3: $2 \sqrt{19}$
Option 4: $-6 \sqrt{2}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $6 \sqrt{2}$
Solution : $y^2+\frac{1}{y^2}=74$ Subtracting 2 from both sides, $⇒y^2+\frac{1}{y^2}-2=74-2$ ⇒ $(y-\frac{1}{y})^2=72$ ⇒ $y-\frac{1}{y}=\pm\sqrt{72}$ As $y>1$, $\therefore y-\frac{1}{y}=\sqrt{72}=\sqrt{36×2}=6\sqrt2$ Hence, the correct answer is $6\sqrt{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\left(y^2+\frac{1}{y^2}\right)=167$ and $y>0$, find the value of $\left(y+\frac{1}{y}\right)$.
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Question : If $\left(w+\frac{1}{w}\right)=6$, then what will be the value of $\left(w-\frac{1}{w}\right)?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile