Question : If $a+b+c=5, a^3+b^3+c^3=85$, and $abc=25$, then find the value of $a^2+b^2+c^2-a b- bc - ca$.
Option 1: 2
Option 2: 4
Option 3: 6
Option 4: 8
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : $a+b+c=5$ Squaring both sides, ⇒ $(a+b+c)^2 = 25$ ⇒ $a^2 + b^2 + c^2 +2(ab+bc+ca) = 25 $ ⇒ $a^2 + b^2 + c^2 - ab - bc - ca + 3(ab+bc+ca) = 25$ ........(1) Now we have to find the value of $(ab + bc + ca)$ $a+b+c=5$ Cubing both sides, ⇒ $a^3 + b^3 + c^3 + 3[(a+b+c)(ab+ac+bc)−abc] = 125$ ⇒ $85 + 3[5 (ab+bc+ca) - 25] = 125$ ⇒ $15(ab+bc+ca) - 75 = 40$ ⇒ $3(ab+bc+ca) = \frac{115}{5}$ ⇒ $3(ab+bc+ca) = 23$ Putting in (1), ⇒ $a^2 +b^2 + c^2 -ab - bc-ca = 25 -23$ ⇒ $a^2 + b^2 +c^2 -ab - bc - ca = 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If a : b = 4 : 5 and b : c = 3 : 10, then a : c is:
Question : If $a+b+c$ = 6 and $ab+bc+ca$ = 11, then the value of $bc(b+c)+ca(c+a)+ab(a+b)+3abc$ is:
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $a = 101, b = 102,$ and $c =103$, then $a^{2} + b^{2} + c^{2} -ab - bc - ca$ =_____
Question : What is the possible value of (a + b + c) – 3, if a2 + b2 + c2 = 9 and ab + bc + ca = 8?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile