Question : If $\mathrm{p}=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $\mathrm{q}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ then, find the value of $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}$.
Option 1: 200
Option 2: 196
Option 3: 198
Option 4: 188
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 198
Solution : Given: $\mathrm{p}=\frac{\sqrt{2}+1}{\sqrt{2}-1}$, $\mathrm{q}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ Rationalising $p$, we get: $p= 3+2\sqrt{2}$ ⇒ $p^2=17+12\sqrt{2}$ $\mathrm{q}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ Rationalising $q$, we get: $q= 3-2\sqrt{2}$ ⇒ $q^2=17-12\sqrt{2}$ $\therefore$ $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}=(\frac{17+12\sqrt{2}}{3-2\sqrt{2}})+(\frac{17-12\sqrt{2}}{3+2\sqrt{2}})$ ⇒ $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}=\frac{(17+12\sqrt{2})(3+2\sqrt{2})+(17-12\sqrt{2})(3-2\sqrt{2})}{(3+2\sqrt{2})(3-2\sqrt{2})}$ ⇒ $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}=\frac{2\times 17\times 3+2\times 12\times2\times 2}{(3+2\sqrt{2})(3-2\sqrt{2})}$ ⇒ $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}=198$ Hence, the correct answer is 198.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sqrt{1+\frac{\sqrt{3}}{2}}-\sqrt{1-\frac{\sqrt{3}}{2}}=c$, then the value of $\mathrm{c}$ is:
Question : If $\sec ^2 \mathrm{~A}+\tan ^2 \mathrm{~A}=3$, then what is the value of $\cot \mathrm{A}$?
Question : If $p=9, q=\sqrt{17}$, then the value of $(p^2-q^2)^{-\frac{1}{3}}$ is equal to:
Question : If $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}=\frac{b+a \sqrt{3}}{11}, b>0$, then what is the value of $\sqrt{(\mathrm{b}-\mathrm{a})}$?
Question : If $\mathrm{p}=7+4 \sqrt{3}$, then what is the value of $\frac{\mathrm{p}^6+\mathrm{p}^4+\mathrm{p}^2+1}{\mathrm{p}^3}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile