Question : If $a =\cot A+\cos A$ and $b =\cot A-\cos A$, then find the value of $a^2-b^2-4 \sqrt{ab}$.
Option 1: 0
Option 2: –1
Option 3: 1
Option 4: –4
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: 0
Solution :
$a =\cot A+\cos A$
$b =\cot A-\cos A$
We have to find the value of $a^2-b^2-4 \sqrt{ab}$.
$= (\cot A+\cos A)^{2}-(\cot A-\cos A)^{2}-4\sqrt{(\cot A+\cos A)(\cot A-\cos A)}$
$= \cot^{2} A+\cos^{2} A+2\cot A\times \cos A-(\cot^{2} A+\cos^{2} A-2\cot A\times \cos A)-4\sqrt{\cot^{2}A-\cos^{2}A}$
$= (\cot^{2} A+\cos^{2} A+2\cot A\times \cos A-\cot^{2} A-\cos^{2} A+2\cot A\times \cos A)-4\sqrt{\frac{\cos^{2}A}{\sin^{2}A}-\cos^{2}A}$
$= (4\cot A\cos A)-4\sqrt{\frac{\cos^{2}A(1-\sin^{2}A)}{\sin^{2}A}}$
$= (4\cot A\cos A)-4\sqrt{\cos^{2}A\times \frac{\cos^{2}A}{\sin^{2}A}}$
$= (4\cot A\cos A)-4\sqrt{\cos^{2}A\times \cot^{2}A}$
$= (4\cot A\cos A)-4\cos A\times \cot A$
$= 0$
Hence, the correct answer is 0.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.