Question : If $a =\cot A+\cos A$ and $b =\cot A-\cos A$, then find the value of $a^2-b^2-4 \sqrt{ab}$.
Option 1: 0
Option 2: –1
Option 3: 1
Option 4: –4
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : $a =\cot A+\cos A$ $b =\cot A-\cos A$ We have to find the value of $a^2-b^2-4 \sqrt{ab}$. $= (\cot A+\cos A)^{2}-(\cot A-\cos A)^{2}-4\sqrt{(\cot A+\cos A)(\cot A-\cos A)}$ $= \cot^{2} A+\cos^{2} A+2\cot A\times \cos A-(\cot^{2} A+\cos^{2} A-2\cot A\times \cos A)-4\sqrt{\cot^{2}A-\cos^{2}A}$ $= (\cot^{2} A+\cos^{2} A+2\cot A\times \cos A-\cot^{2} A-\cos^{2} A+2\cot A\times \cos A)-4\sqrt{\frac{\cos^{2}A}{\sin^{2}A}-\cos^{2}A}$ $= (4\cot A\cos A)-4\sqrt{\frac{\cos^{2}A(1-\sin^{2}A)}{\sin^{2}A}}$ $= (4\cot A\cos A)-4\sqrt{\cos^{2}A\times \frac{\cos^{2}A}{\sin^{2}A}}$ $= (4\cot A\cos A)-4\sqrt{\cos^{2}A\times \cot^{2}A}$ $= (4\cot A\cos A)-4\cos A\times \cot A$ $= 0$ Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin\theta+\cos\theta=\sqrt{2}\cos\theta$, then the value of $\cot\theta$ is:
Question : If $\tan \theta -\cot \theta =0$, find the value of $\sin \theta +\cos \theta$.
Question : If $\cos \theta+\sec \theta=\sqrt{3}$, then the value of $\cos ^3 \theta+\sec ^3 \theta$ is:
Question : If $\theta$ is a positive acute angle and $4\cos ^{2}\theta -4\cos \theta +1=0$, then the value of $\tan (\theta -15^{\circ})$is equal to:
Question : If $\sin A-\cos A=\frac{\sqrt{3}-1}{2}$, then the value of $\sin A\cdot \cos A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile