Question : If $0\leq \theta\leq \frac{\pi}{2}$ and $\sec^{2}\theta+\tan^{2}\theta=7$, then $\theta$ is:
Option 1: $\frac{5\pi}{12}$
Option 2: $\frac{\pi}{3}$
Option 3: $\frac{\pi}{5}$
Option 4: $\frac{\pi}{6}$
Correct Answer: $\frac{\pi}{3}$
Solution : Given: $\sec^{2}\theta+\tan^{2}\theta=7$ -------------(1) We know that $\sec^{2}\theta-\tan^{2}\theta=1$ ------------(2) Adding equations (1) and (2), we have, ⇒ $2\sec^{2}\theta=8$ ⇒ $\sec^{2}\theta=4$ ⇒ $\sec\theta=2$ ⇒ $\sec\theta=\sec60°$ ⇒ $\theta=60°=\frac{\pi}{3}$ Hence, the correct answer is $\frac{\pi}{3}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{\tan\theta +\cot\theta }{\tan\theta -\cot\theta }=2, (0\leq \theta \leq 90^{0})$, then the value of $\sin\theta$ is:
Question : If $\tan (11 \theta)=\cot (7 \theta)$, then what is the value of $\sin ^2(6 \theta)+\sec ^2(9 \theta)+\operatorname{cosec}^2(12 \theta) ?$
Question : If $0 \leq \theta \leq 90^{\circ}$ and $\sec ^{107} \theta+\cos ^{107} \theta=2$, then, $(\sec \theta+\cos \theta)$ is equal to:
Question : If $0°<\theta<90°$ and $2\sec\theta =3 \operatorname{cosec}^2 \theta$, then $\theta$ is:
Question : If $\sec\theta+\tan\theta=2$, then the value of $\sec\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile