Question : If $\tan(A+B)=\sqrt{3}$, and $\tan(A-B)=\frac{1}{\sqrt{3}}$, $\angle A+\angle B<90°$; $A\geq B$ then $\angle A$ is:
Option 1: 90°
Option 2: 30°
Option 3: 45°
Option 4: 60°
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 45°
Solution : Given: $\tan(A+B)=\sqrt{3}$ ⇒ $A+B=60°$ ------(1) $\tan(A-B)=\frac{1}{\sqrt{3}}$ ⇒ $A-B=30°$ ------(2) Adding equations (1) and (2), we have, $2A=90°$ $\therefore A=45°$ Hence, the correct answer is 45°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : If $A=60^{\circ}$ and $B=30^{\circ}$, find the value of $\frac{(\tan A-\tan B)}{(1+\tan A \tan B)}$.
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Question : If $A=30^{\circ}$, then find the value of $\frac{(2 \tan A)}{\left(1-\tan^2 A\right)}$.
Question : If $\cos 5 \alpha=\sin \alpha$ and $5 \alpha<90^{\circ}$, then the value of $\tan 2 \alpha$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile