Question : If $3 x=\sec A$ and $\frac{3}{x}=\tan A$, then $9\left(x^2-\frac{1}{x^2}\right)$ is:
Option 1: $3$
Option 2: $9$
Option 3: $1$
Option 4: $\frac{1}{9}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : We know that, $\sec ^2A-\tan^2 A=1$ ⇒ $(3x)^2-(\frac{3}{x})^2=1$ ⇒ $9x^2-\frac{9}{x^2}=1$ ⇒ $9\left(x^2-\frac{1}{x^2}\right)=1$ Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sec \theta+\tan \theta=5, (\theta \neq 0)$, then $\sec \theta$ is equal to:
Question : If $\frac{1}{x^2+a^2}=x^2-a^2$, then the value of $x$ is:
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $\tan ^2 \alpha=3+Q^2$, then $\sec \alpha+\tan ^3 \alpha \operatorname{cosec} \alpha=?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile