Question : If $px + qy = 1$ and $q x+p y=\frac{2 p q}{p^2+q^2}$, then $\left(x^2+y^2\right)\left(p^2+q^2\right)$ is equal to:
Option 1: 2
Option 2: 3
Option 3: 0
Option 4: 1
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $px + qy = 1$---(1) $q x+p y=\frac{2 p q}{p^2+q^2}$---(2) Adding 1 and 2, we get, $px+qy+qx+py=1+\frac{2 p q}{p^2+q^2}$ $⇒p(x+y)+q(x+y)=\frac{p^2+q^2+2 p q}{p^2+q^2}$ $⇒(x+y)(p+q)=\frac{(p+q)^2}{p^2+q^2}$ $⇒(x+y)=\frac{(p+q)}{p^2+q^2}$ ----------(3) Subtracting 2 from 1, we get, $px+qy-qx-py=1-\frac{2 p q}{p^2+q^2}$ $⇒p(x-y)-q(x-y)=\frac{p^2+q^2-2 p q}{p^2+q^2}$ $⇒(x-y)(p-q)=\frac{(p-q)^2}{p^2+q^2}$ $⇒(x-y)=\frac{(p-q)}{p^2+q^2}$ ---------(4) Adding (3) and (4), $⇒ 2x = \frac{2p}{p^2+q^2}$ $⇒ x = \frac{p}{p^2+q^2}$ $⇒ x^2 = \frac{p^2}{(p^2+q^2)^2}$------------(5) Subtracting 4 from 3, $⇒ 2y = \frac{2q}{p^2+q^2}$ $⇒ y = \frac{q}{p^2+q^2}$ $⇒ y^2 = \frac{q^2}{(p^2+q^2)^2}$------------(6) Adding 5 and 6, $⇒ x^2+y^2 = \frac{p^2+q^2}{(p^2+q^2)^2}$ $\left(x^2+y^2\right)\left(p^2+q^2\right) = \frac{p^2+q^2}{p^2+q^2}=1$ Hence, the correct answer is 1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x$ = $y$ = $z$, then $\frac{\left (x+y+z \right )^{2}}{x^{2}+y^{2}+z^{2}}$ is equal to:
Question : If $xy+yz+zx=0$, then $(\frac{1}{x^2–yz}+\frac{1}{y^2–zx}+\frac{1}{z^2–xy})$$(x,y,z \neq 0)$ is equal to:
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Question : If $x=\operatorname{cosec \theta}-\sin\theta$ and $y=\sec\theta-\cos\theta$, then the relation between $x$ and $y$ is:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile