Question : If $x=(0.25)^\frac{1}{2}$, $y=(0.4)^{2}$, and $z=(0.216)^{\frac{1}{3}}$, then:
Option 1: $y>x>z$
Option 2: $x>y>z$
Option 3: $z>x>y$
Option 4: $x>z>y$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $z>x>y$
Solution : $x=0.25^\frac{1}{2}=\sqrt{0.25}=0.5$ $y=0.4^2=0.16$ $z=0.216^\frac{1}{3}=\sqrt[3]{0.216}=0.6$ Clearly, $z>x>y$ Hence, the correct answer is $z>x>y$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : Three fractions $x, y$ and $z$ are such that $x > y > z$. When the smallest of them is divided by the greatest, the result is $\frac{9}{16}$, which exceeds $y$ by 0.0625. If $x+y+z=2 \frac{3}{12}$, then what is the value of $x + z$?
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Question : Simplify $\frac{1}{2 + 2 p} + \frac{1}{2 + 2 q} + \frac{1}{2 + 2 r}$, where $p = \frac{x}{y + z}$, if $q = \frac{y}{z + x}$ and $r = \frac{z}{x + y}$.
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile