Question : If $x^4+y^4+x^2 y^2=17 \frac{1}{16}$ and $x^2-x y+y^2=5 \frac{1}{4}$, then one of the values of $(x-y)$ is:
Option 1: $\frac{5}{2}$
Option 2: $\frac{3}{4}$
Option 3: $\frac{5}{4}$
Option 4: $\frac{3}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{2}$
Solution : Given: $x^4+y^4+x^2 y^2=17 \frac{1}{16}$..........................(1) $x^2-x y+y^2=5 \frac{1}{4}$..........................(2) ⇒ $x^4 + y^4 + x^2y^2 = (x^2 - xy + y^2) (x^2 + xy + y^2)$ ⇒ $17\frac{1}{16} = 5\frac{1}{4} (x^2 + xy + y^2)$ ⇒ $\frac{273}{16} = \frac{21}{4} (x^2 + xy + y^2)$ ⇒ $x^2 + xy + y^2 = \frac{13}{4}$..........................(3) On adding (2) and (3), we get $x^2 + y^2 = \frac{17}{4}$..................................(4) Subtract (2) form (3), we get $xy = -1$.....................................(5) Now, Using the formula $(a - b)^2 = a^2 + b^2 - 2ab$ $(x - y)^2 = x^2 + y^2 - 2xy$ From (4) and (5), we get ⇒ $(x - y)^2 = \frac{17}{4} - 2 × (-1)$ ⇒ $(x - y)^2 = \frac{17}{4} + 2 = \frac{25}{4}$ ⇒ $(x - y) = \frac{5}{2}$ Hence, the correct answer is $\frac{5}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $2x^2+5 x+1=0$, then one of the values of $x-\frac{1}{2 x}$ is:
Question : If $4^{(x+y)} = 256$ and $(256)^{(x–y)} = 4$, what are the values of $x$ and $y?$
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : Simplify: $\frac{256 x^4-16 y^4}{\left(80 x^2-20 y^2\right)\left(16 x^2+4 y^2\right)}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile