Question : If $x\cos \theta -y\sin \theta =\sqrt{x^{2}+y^{2}}$ and $\frac{\cos ^2{\theta }}{a^{2}}+\frac{\sin ^{2}\theta}{b^{2}}=\frac{1}{x^{2}+y^{2}},$ then the correct relation is:
Option 1: $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2}}=1$
Option 2: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Option 3: $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$
Option 4: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Solution : $x\cos \theta -y\sin \theta =\sqrt{x^{2}+y^{2}}$ ..................................(1) $\frac{\cos ^2{\theta }}{a^{2}}+\frac{\sin ^{2}\theta }{b^{2}}=\frac{1}{x^{2}+y^{2}}$ .......................................(2) From equation (1), $\frac{x\cos \theta}{\sqrt{x^{2}+y^{2}}} -\frac{y\sin \theta}{\sqrt{x^{2}+y^{2}}} =1$ Comparing with $\cos^2 \theta + \sin^2 \theta = 1$, we get, $\sin \theta = -\frac{y}{\sqrt{x^{2}+y^{2}}}$ and $\cos \theta = \frac{x}{\sqrt{x^{2}+y^{2}}}$ Putting in (2), $\frac{x^2}{(x^2 + y^2)a^2}+ \frac{y^2}{(x^2 + y^2)b^2} = \frac{1}{(x^2 + y^2)}$ ⇒ $\frac{x^2}{a^2}+ \frac{y^2}{b^2} = 1$ Hence, the correct answer is $\frac{x^2}{a^2}+ \frac{y^2}{b^2} = 1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (x - y) = \frac{1}2$ and $\cos (x + y) = \frac{1}2$, then what is the value of $\sin x \cos x + 2\sin^2x + cos^3x \sec x$?
Question : If $x=a\left ( \sin\theta+\cos\theta \right )$ and $y=b\left ( \sin\theta-\cos\theta \right )$, then the value of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $(4 \sin \theta+5 \cos \theta)=3$, then the value of $(4 \cos \theta-5 \sin \theta)$ is:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile