Question : If $x+y=4, x^{2}+y^{2}=14$ and $x>y$, then the correct value of $x$ and $y$ is:
Option 1: $2+\sqrt{3} \text{ and } 2-\sqrt{3}$
Option 2: $2-\sqrt{2} \text{ and } \sqrt{3}$
Option 3: $3 \text{ and } 1$
Option 4: $2+\sqrt{3} \text{ and } 2\sqrt{2}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2+\sqrt{3} \text{ and } 2-\sqrt{3}$
Solution : Given: $x^{2}+y^{2}=14$ -----------(i) ⇒ $x+y=4$ ----------------(ii) Squaring on both sides of equation (ii), $(x+y)^{2} = 4^{2}$ ⇒ $x^{2}+y^{2}+2xy = 16$ ⇒ $14+2xy = 16$ ⇒ $2xy = 2$ Subtracting $2xy$ on both sides from equation (i) $x^{2}+y^{2}-2xy = 14-2xy$ ⇒ $(x-y)^{2} = 12$ ⇒ $(x-y) = \sqrt12$ ⇒ $x-y =2\sqrt3$ -----------(iii) From (ii) and (iii) $x = 2+ \sqrt3$ and $y = 2- \sqrt3$ Hence, the correct answer is $2+ \sqrt3 \text{ and } 2- \sqrt3$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Question : If $x=\sqrt{3}-\frac{1}{\sqrt{3}}, y=\sqrt{3}+\frac{1}{\sqrt{3}}$, then the value of $\frac{x^2}{y}+\frac{y^2}{x}$ is:
Question : If $x^2-3.2 x+1=0$ and $x>1$, the value of $x^2-\frac{1}{x^2}$ is:
Question : If $x=\frac{1}{x-5}(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile