Question : If $( x^{3}-y^{3}):( x^{2}+xy+y^{2})=5:1$ and $( x^{2}-y^{2}):(x-y)=7:1$, then the ratio $2x:3y$ equals:
Option 1: $4:1$
Option 2: $2:3$
Option 3: $4:3$
Option 4: $3:2$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4:1$
Solution : Given: $(x^{3}-y^{3}):( x^{2}+xy+y^{2})=5:1$ and $( x^{2}-y^{2}):(x-y)=7:1$ Now, $\frac{x^{3}-y^{3}}{ x^{2}+xy+y^{2}}=\frac{5}{1}$ Using the algebraic identity, $a^3-b^3=(a-b)(a^2+ab+b^2)$ ⇒ $\frac{(x-y)(x^{2}+xy+y^{2})}{ x^{2}+xy+y^{2}}=\frac{5}{1}$ ⇒ $x-y=5$ ......................... (1) Again, $\frac{x^{2}-y^{2}}{ x-y}=\frac{7}{1}$ Using the algebraic identity $a^2-b^2=(a-b)(a+b)$ ⇒$\frac{(x-y)(x+y)}{ x-y}=\frac{7}{1}$ ⇒ $x+y=7$ ........................ (2) Solving both equations, we get: ⇒ $x= 6, y=1$ Thus, $2x:3y$ = $2×6:3×1$ = $12:3$ = $4:1$ Hence, the correct answer is $4:1$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $xy(x+y)=m$, then the value of $(x^3+y^3+3m)$ is:
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x+y=1+xy$, then $x^3+y^3-x^3y^3$ is equal to:
Question : If $x^2-xy+y^2=2$ and $x^4+x^2y^2+y^4=6$, then the value of $(x^2+xy+y^2)$ is:
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile