Question : If $x=\operatorname{cosec \theta}-\sin\theta$ and $y=\sec\theta-\cos\theta$, then the relation between $x$ and $y$ is:
Option 1: $x^{2}+y^{2}+3=1$
Option 2: $x^{2}y^{2}\left ( x^{2}+y^{2}+3 \right )=1$
Option 3: $x^{2}\left ( x^{2}+y^{2}-5 \right )=1$
Option 4: $y^{2}\left ( x^{2}+y^{2}-5 \right )=1$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $x^{2}y^{2}\left ( x^{2}+y^{2}+3 \right )=1$
Solution : $x=\operatorname{cosec \theta}-\sin\theta$ ⇒ $x=\frac{1}{\sin\theta}-\sin\theta=\frac{1-\sin^2\theta} {\sin\theta}=\frac{\cos^2\theta}{\sin\theta}$ Also, $x^2=(\frac{\cos^2\theta}{\sin\theta})^2$_____ (i) $y=\sec\theta-\cos\theta$ ⇒ $y=\frac{1}{\cos\theta}-\cos\theta=\frac{1-\cos^2\theta}{\cos\theta}=\frac{\sin^2\theta}{\cos\theta}$ ⇒ $y^2=(\frac{\sin^2\theta}{\cos\theta})^2$_____ (ii) So, $x^2+y^2=(\frac{\cos^2\theta}{\sin\theta})^2+(\frac{\sin^2\theta}{\cos\theta})^2$ ⇒ $x^2+y^2=\frac{\cos^4\theta}{\sin^2\theta}+\frac{\sin^4\theta}{\cos^2\theta}$ ⇒ $x^2+y^2=\frac{\cos^6\theta+\sin^6\theta}{\sin^2\theta\cos^2\theta}$ Add 3 to both sides, we get, ⇒ $x^2+y^2+3=\frac{\cos^6\theta+\sin^6\theta}{\sin^2\theta\cos^2\theta}+3$ ⇒ $x^2+y^2+3=\frac{\cos^6\theta+\sin^6\theta+3\sin^2\theta\cos^2\theta(\sin^2\theta+\cos^2\theta)}{\sin^2\theta\cos^2\theta}$ ⇒ $x^2+y^2+3=\frac{(\cos^2\theta+\sin^2\theta)^3}{\sin^2\theta\cos^2\theta}$ ⇒ $x^2+y^2+3=\frac{1}{\sin^2\theta\cos^2\theta}$ ⇒ $x^2+y^2+3=\frac{\sin^2\theta\cos^2\theta}{\sin^4\theta\cos^4\theta}$ ⇒ $x^2+y^2+3=\frac{1}{(\frac{\cos^2\theta}{\sin\theta})^2×(\frac{\sin^2\theta}{\cos\theta})^2}$ From equation (i) and (ii), we get, $x^2+y^2+3=\frac{1}{x^2y^2}$ $\therefore x^{2}y^{2}\left ( x^{2}+y^{2}+3 \right )=1$ Hence, the correct answer is $x^{2}y^{2}\left ( x^{2}+y^{2}+3 \right )=1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=a\left ( \sin\theta+\cos\theta \right )$ and $y=b\left ( \sin\theta-\cos\theta \right )$, then the value of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ is:
Question : If $\cos\theta+\sin\theta=m$ and $\sec\theta+\operatorname{cosec \theta}=n$, then the value $n\left ( m^{2}-1 \right )$ is equal to:
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : If $\sin \theta+\cos \theta = p$ and $\sec \theta + \operatorname{cosec} \theta = q$, then the value of $q \times (p^2-1)$ is:
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile