Question : If $ p(x+y)^{2}=5$ and $q(x-y)^{2}=3$, then the simplified value of $p^{2}(x+y)^{2}+4pq xy -q^{2}(x-y)^{2}$ is:
Option 1: $-(p+q)$
Option 2: $2(p+q)$
Option 3: $p+q$
Option 4: $-2(p+q)$
Correct Answer: $2(p+q)$
Solution : $p(x+y)^{2}=5$ and $q(x-y)^{2}=3$ $(x+y)^2 = \frac{5}{p}$ and $(x-y)^2 = \frac{3}{q}$ Since $(x+y)^2- (x-y)^2 = 4xy $ So, $ 4xy = \frac{5}{p} - \frac{3}{q}$ By putting it in the given expression, we have, $p^{2}(x+y)^{2}+4pq xy -q^{2}(x-y)^{2}$ = $p^2 \frac{5}{p} + 4pqxy - q^2 \frac{3}{q}$ = $5p + 4pqxy -3q$ = $5p+pq(\frac{5}{p} - \frac{3}{q})-3q$ = $5p +5q - 3p - 3q = 2(p+q)$ Hence, the correct answer is $2(p+q)$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Question : If $x= 19$ and $y= 18$, then the value of $\frac{x^{2}+y^{2}+xy}{x^{3}-y^{3}}$ is:
Question : If $2^{2x-y}=16$ and $2^{x+y}=32$, the value of $xy$ is:
Question : If $\frac{x}{y}+\frac{y}{x}=1$ and $x+y=2$, then the value of $x^3+y^3$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile