Question : If $\cos\theta+\sin\theta=m$ and $\sec\theta+\operatorname{cosec \theta}=n$, then the value $n\left ( m^{2}-1 \right )$ is equal to:
Option 1: $2m$
Option 2: $mn$
Option 3: $4mn$
Option 4: $2n$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $2m$
Solution : We know that $\cos\theta+\sin\theta=m$ and $\sec\theta+\operatorname{cosec \theta}=n$. $⇒n\left ( m^{2}-1 \right ) = \left(\frac{1}{\cos\theta}+\frac{1}{\sin\theta}\right)\left((\cos\theta+\sin\theta)^{2}-1\right)$ $⇒n\left ( m^{2}-1 \right ) = \left(\frac{1}{\cos\theta}+\frac{1}{\sin\theta}\right)\left(\cos^{2}\theta+2\sin\theta\cos\theta+\sin^{2}\theta-1\right)$ We know that $\cos^{2}\theta+\sin^{2}\theta=1$, $⇒n\left ( m^{2}-1 \right ) = \left(\frac{1}{\cos\theta}+\frac{1}{\sin\theta}\right)\left(2\sin\theta\cos\theta\right)$ $⇒n\left ( m^{2}-1 \right ) = 2\sin\theta\cos\theta\left(\frac{1}{\cos\theta}+\frac{1}{\sin\theta}\right)$ $⇒n\left ( m^{2}-1 \right ) = 2\left(\sin\theta+\cos\theta\right)$ But we know that $\sin\theta+\cos\theta=m$, $⇒n\left ( m^{2}-1 \right ) = 2m$ Hence, the correct answer is $2m$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Question : If $m = \sec \theta- \tan \theta$ and $n = \operatorname{cosec} \theta + \cot \theta$, then what is the value of $m + n(m-1)$?
Question : If $\sin \theta+\cos \theta = p$ and $\sec \theta + \operatorname{cosec} \theta = q$, then the value of $q \times (p^2-1)$ is:
Question : If $\cos \theta+\sin \theta=\sqrt{2}$, then what is the value of $\sec \theta \operatorname{cosec} \theta$ ?
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile