Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Option 1: 9
Option 2: 12
Option 3: 15
Option 4: 16
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 9
Solution : Given: $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})=0$ $(x+\frac{1}{x})^3=x^3+\frac{1}{x^3}+3×x×\frac{1}{x}(x+\frac{1}{x})$ Substitute the value of $(x^3+\frac{1}{x^3})=0$ in above equation, we get, ⇒ $(x+\frac{1}{x})^3=0+3(x+\frac{1}{x})$ ⇒ $(x+\frac{1}{x})^3=3(x+\frac{1}{x})$ ⇒ $(x+\frac{1}{x})^{3–1}=3$ ⇒ $(x+\frac{1}{x})^2=3$ On squaring both sides of the above equation, we get, ⇒ $((x+\frac{1}{x})^2)^2=3^2$ ⇒ $(x+\frac{1}{x})^4=9$ Hence, the correct answer is 9.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $x^2+\frac{1}{x^2}=7$, then the value of $x^3+\frac{1}{x^3}$ where x > 0 is equal to:
Question : If $x-\frac{3}{x}=6, x \neq 0$, then the value of $\frac{x^4-\frac{27}{x^2}}{x^2-3 x-3}$ is:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile