Question : If $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$ and $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}$ then the value of $\frac{x^2-x y+y^2}{x^2+x y+y^2}=$?
Option 1: $\frac{361}{363}$
Option 2: $\frac{341}{343}$
Option 3: $\frac{384}{387}$
Option 4: $\frac{321}{323}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{321}{323}$
Solution : $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}} = \frac{(\sqrt{5}-\sqrt{4})^2}{(\sqrt{5}+\sqrt{4})(\sqrt{5}-\sqrt{4})} = \frac{5+4-4\sqrt5}{5-4} = 9-4\sqrt5$ $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}} = \frac{(\sqrt{5}+\sqrt{4})^2}{(\sqrt{5}-\sqrt{4})(\sqrt{5}+\sqrt{4})} = \frac{5+4+4\sqrt5}{5-4} = 9+4\sqrt5$ ⇒ $xy=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}×\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}=1$ and $x+y=9-4\sqrt5+9+4\sqrt5=18$ Now, $\frac{x^2-x y+y^2}{x^2+x y+y^2}$ = $\frac{x^2+2xy+y^2-3xy}{x^2+2xy+y^2-xy}$ = $\frac{(x+y)^2-3xy}{(x+y)^2-xy}$ = $\frac{(18)^2-3}{(18)^2-1}$ = $\frac{321}{323}$ Hence, the correct answer is $\frac{321}{323}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Question : If $x^4+y^4+x^2 y^2=17 \frac{1}{16}$ and $x^2-x y+y^2=5 \frac{1}{4}$, then one of the values of $(x-y)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile