Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Option 1: $1$
Option 2: $\frac{1}{2}$
Option 3: $\frac{3}2$
Option 4: $2$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : Given: $x\sin\theta=y\cos\theta$ And, $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ ⇒ $x\sin\theta(\sin^{2}\theta) +y\cos\theta(\cos^{2}\theta)=\sin\theta\cos\theta$ Since, $x\sin\theta=y\cos\theta$ and $\sin^{2}\theta+\cos^{2}\theta=1$, So, $x\sin\theta=y\cos\theta=\sin\theta\cos\theta$ ⇒ $x=\cos\theta$ and $y=\sin\theta$ So, $x^{2}+y^{2}=\sin^{2}\theta+\cos^{2}\theta=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=a(\sin\theta+\cos\theta), y=b(\sin\theta-\cos\theta)$, then the value of $\frac{x^2}{a^2}+\frac{y^2}{b^2}$ is:
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Question : If $x=8(\sin \theta+\cos \theta)$ and $y=9(\sin \theta-\cos \theta)$, then the value of $\frac{x^2}{8^2}+\frac{y^2}{9^2}$ is:
Question : If $\sin \theta=\frac{1}{2}$, then the value of $\left(3 \cos \theta-4 \cos ^3 \theta\right)$ is:
Question : The expression $\frac{\left(1-2 \sin ^2 \theta \cos ^2 \theta\right)(\cot \theta+1) \cos \theta}{\left(\sin ^4 \theta+\cos ^4 \theta\right)(1+\tan \theta) \operatorname{cosec} \theta}-1,0^{\circ}<\theta<90^{\circ}$, equals:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile