Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Option 1: $\frac{3}{4}$
Option 2: $\frac{4}{3}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{5}{3}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{4}{3}$
Solution : Given: $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then $x^2=\frac{5+1+2\sqrt{5}}{5+1-2\sqrt{5}}$ and $y^2=\frac{5+1-2\sqrt{5}}{5+1+2\sqrt{5}}$ ⇒ $x^2=\frac{6+2\sqrt{5}}{6-2\sqrt{5}}$ and $y^2=\frac{6-2\sqrt{5}}{6+2\sqrt{5}}$ and, $xy = \frac{\sqrt{5}+1}{\sqrt{5}-1}×\frac{\sqrt{5}-1}{\sqrt{5}+1}=1$ Putting the values, we get: $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ = $\frac{\frac{6+2\sqrt{5}}{6-2\sqrt{5}}+1+\frac{6-2\sqrt{5}}{6+2\sqrt{5}}}{\frac{6+2\sqrt{5}}{6-2\sqrt{5}}-1+\frac{6-2\sqrt{5}}{6+2\sqrt{5}}}$ = $\frac{\frac{(6+2\sqrt{5})^2+6^2-(2\sqrt5)^2+(6-2\sqrt{5})^2}{(6)^2-(2\sqrt{5})^2}}{\frac{(6+2\sqrt{5})^2-6^2+(2\sqrt5)^2+(6-2\sqrt{5})^2}{(6)^2-(2\sqrt{5})^2}}$ = $\frac{36+20+24\sqrt5+36-20+36+20-24\sqrt5}{36+20+24\sqrt5-36+20+36+20-24\sqrt5}$ = $\frac{128}{96}$ = $\frac{4}{3}$ Hence, the correct answer is $\frac{4}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$ and $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}$ then the value of $\frac{x^2-x y+y^2}{x^2+x y+y^2}=$?
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Question : If $x+ \sqrt{5} = 5+\sqrt{y}$ are positive integers, then the value of $\frac{\sqrt{x}+y}{x+ \sqrt{y}}$ is:
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile