Question : If $x>1$ and $x+\frac{1}{x}=2\frac{1}{12}$, then the value of $x^{4}-\frac{1}{x^{4}}$ is:
Option 1: $\frac{58975}{20736}$
Option 2: $\frac{59825}{20736}$
Option 3: $\frac{57985}{20736}$
Option 4: $\frac{57895}{20736}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{58975}{20736}$
Solution : Given that: $x+\frac{1}{x}=\frac{25}{12}$ ⇒ $12(x^2+1)=25x$ ⇒ $12x^2-25x+12=0$ ⇒ $12x^2-25x+12=0$ ⇒ $12x^2-16x-9x+12=0$ ⇒ $(4x-3)(3x-4)=0$ ⇒ $x=\frac{4}3$ since $x>1$ $\therefore x^4-\left(\frac{1}{x}\right)^4$ Substituting the values, $x^4-\left(\frac{1}{x}\right)^4= (\frac{4}3)^4-(\frac{3}4)^4$ $= \frac{256}{81}-\frac{81}{256}$ $= \frac{58975}{20736}$ Hence, the correct answer is $\frac{58975}{20736}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x^4+\frac{1}{x^4}=194, x>0$, then find the value of $x^3+\frac{1}{x^3}+x+\frac{1}{x}$
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $x^2+\frac{1}{x^2}=4$, then what is the value of $x^4+\frac{1}{x^4}$?
Question : If $x^2+\frac{1}{x^2}=7$, then what is the value of $x^3+\frac{1}{x^3}$?
Question : If $x^2-\sqrt{9.76} x+1=0$ and $x>1$, then the value of $\left(x^3-\frac{1}{x^3}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile