Question : If $a^2+1=9a$ and $a\neq0$, then the value of $a^2+\frac{1}{a^2}$ is:
Option 1: 81
Option 2: 18
Option 3: 79
Option 4: 83
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 79
Solution : Given: $a^2+1=9a, a\neq0$ Dividing both sides by $a$, we get $a+\frac{1}{a}=9$ Squaring both sides, we get $a^2+\frac{1}{a^2}+2×a×\frac{1}{a}=81$ ⇒ $a^2+\frac{1}{a^2}=81-2$ $\therefore a^2+\frac{1}{a^2}=79$ Hence, the correct answer is 79.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x-\frac{1}{2x}=5,x\neq0$, then the value of $(x^2+\frac{1}{16x^2}-2)$is:
Question : If $\frac{1}{a}(a^2+1)=3$, then the value of $\frac{a^6+1}{a^3}$ is:
Question : If $\small a^{3}+3a^{2}+9a=1$, then what is the value of $a^{3}+\frac{3}{a}$?
Question : If $(2+\sqrt{3})a=(2-\sqrt{3})b=1$, then the value of $\frac{1}{a}+\frac{1}{b}$ is:
Question : If $a^{3}+\frac{1}{a^{3}}=2$, then the value of $\frac{a^{2}+1}{a}$ is ($a$ is a positive number):
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile